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STEPSIZE CONDITIONS FOR BOUNDEDNESS IN NUMERICAL
INITIAL VALUE PROBLEMS*
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Abstract. For Runge-Kutta methods (RKMs), linear multistep methods (LMMs), and classes of
general linear methods (GLMs), much attention has been paid, in the literature, to special nonlinear
stability requirements indicated by the terms total-variation-diminishing, strong stability preserving,
and monotonicity. Stepsize conditions, guaranteeing these properties, were derived by Shu & Osher
[J. Comput. Phys., 77 (1988), pp. 439-471] and in numerous subsequent papers. These special
stability requirements imply essential boundedness properties for the numerical methods, among
which the property of being total-variation-bounded. Unfortunately, for many well-known methods,
the above special requirements are violated, so that one cannot conclude in this way that the methods
are (total-variation-)bounded. In this paper, we focus on stepsize conditions for boundedness directly,
rather than via the detour of the above special stability properties. We present a generic framework
for deriving best possible stepsize conditions which guarantee boundedness of actual RKMs, LMMs,
and GLMs, thereby generalizing results on the special stability properties mentioned above.
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1. Introduction.
1.1. Monotonicity and boundedness. Consider an initial value problem, for
a system of ordinary differential equations, of type

(1.1) %u(t) = F(t,u(t)) (t>0), u(0)=up.

In this paper we study step-by-step methods for computing numerical approximations
un to the true solution values u(nAt), where At denotes a positive stepsize and
n=123,....

Monotonicity of Runge—Kutta methods. The general Runge-Kutta method
(RKM) for computing u,, can be written in the form

(1.2a) Ul["]

Up—1+ At - ZaijF((n -1+ cj)At,Ug-"]) (I1<i<s+1),
j=1
(1.2b)  up = vﬁl.

Here a;; and c; are parameters defining the method, whereas vl[n] (1 <i<s)arein-
termediate approximations used for computing wu,, = vﬁl from u,—1 (n=1,2,3,...);

cf., e.g., [2] or [9]. If a;; = 0 (for j > i), the method is called ezplicit.
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In the following, V stands for the vector space on which the differential equation is
defined, and ||-|| denotes a seminorm on V (i.e., ||[u+v| < ||u|/+]|v| and || Av]| = |A]||v||
for all u,v € V and real A\). Much attention has been paid in the literature to the

property
(1.3) oM < Junoy ]l (for 1< < s+1).

Clearly, (1.3) implies ||uy|| < ||un—1]. The last inequality, as well as property (1.3),
is often referred to by the term monotonicity or strong stability; it is of particular
importance in situations where (1.1) results from (method of lines) semidiscretizations

of time-dependent partial differential equations. Choices for || - || which occur in
that context include, e.g., the supremum norm ||z|| = ||z|| = sup; |&;| and the total
variation seminorm ||| = ||z||rv = Y, |&i+1 —&| (for vectors x with components &;).

Numerical processes satisfying ||u,||7v < |[un—1|7v play a special role in the
solution of hyperbolic conservation laws and are called total-variation-diminishing;
cf., e.g., [10, 22, 23, 19, 18]. For such processes there is, trivially, total variation

boundedness (TVB), in that there is a finite value p such that, for all n > 1,

(1.4) lunllTy < g oy

Satisfying (1.4) is of crucial importance for suitable convergence properties when
At — 0 and constitutes one of the underlying reasons why attention has been paid in
the literature to (1.3); see, e.g., [19].

Conditions on At which guarantee (1.3) were given in the literature, mainly for
autonomous differential equations (i.e., F' is independent of ¢). These conditions apply,
however, equally well to general F', and we discuss them below for that case. In many
papers, one starts from an assumption about F which, for given 79 > 0, essentially
amounts to

(1.5) lv+ F(t,v)|| < |lv|| (forteR,veV).

Assumption (1.5) means that the forward Euler method is monotonic with stepsize
To. It can be interpreted as a condition on the manner in which the semidiscretization
is performed, in case £u(t) = F(t,u(t)) stands for a semidiscrete version of a partial
differential equation.

For classes of RKMs, positive stepsize-coefficients v were determined such that
monotonicity, in the sense of (1.3), is present for all A¢, with

(1.6) 0 <At <v-70;
see, e.g., [23, 7, 26, 4, 5, 11, 20], [25, section 3.2.1].

Monotonicity of linear multistep methods. The linear multistep method
(LMM) for computing u,, can be written in the form

k k
(1.7) Un =Y ajun_j+ Aty b F((n— )AL un_ ),

j=1 j=0
where the parameters a;,b; define the method, > a; = 1; cf,, e.g., [2, 9]. If by = 0,
the method is called ezplicit.

For method (1.7), a study was made of monotonicity, in the sense of the inequality

(18) ol < s fun.
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For classes of LMMs, positive stepsize-coefficients v were determined with the property
that (1.5), (1.6) guarantee (1.8); see, e.g., [22, 7, 16], [25, section 3.2.2]. Clearly, (1.8)
with || - || = || - |lrv implies again (trivially) a TVB-property, in that there is a finite
w such that, for all n > k,

(1.9) lunllry < g onax l|w;llzv-

Boundedness. Unfortunately, there are well-known RKMs and LMMs, with a
record of practical success, for which there exist no positive stepsize-coefficients v such
that (1.5), (1.6) always imply (1.3) or (1.8), respectively. Examples are the Adams
methods and backward differentiation formulas with k& > 2 as well as the Dormand—
Prince formula; cf., e.g., [9]. Moreover, no second order (implicit) RKMs or LMMs
exist with v = oo; see, e.g., [24, sections 2.2, 3.2]. These circumstances suggest that
there are situations where monotonicity may be too strong a theoretical demand and
that it is worthwhile to study, along with monotonicity, also directly the following
weaker boundedness properties for methods (1.2) and (1.7), respectively:

(1.10) HUZ[TL]H <p-lugll (for1<i<s+1andalln>1),
. < u- ; > k).
(1.11) Juall < g mas sl (Gor all n > )

Here p stands for a finite constant (independent of n) which is allowed to be greater
than 1. The requirements (1.10), (1.11), with || - || = || - ||zv, still imply the TVB-
property—which highlights the importance of studying (1.10), (1.11).

Recently (see [16, 17, 21]), some special LMMs were found with a positive stepsize-
coefficient v such that (1.11) holds under conditions (1.5), (1.6), although (1.8) is
violated. The question of whether similar results are possible for other LMMs, as well
as for step-by-step methods of a different kind, seems not to have been considered in
the literature thus far.

1.2. Scope of the paper.

Boundedness of general linear methods. We recall that LMMs and RKMs
are examples of methods belonging to the important and very large class of general
linear methods (GLMs), introduced by Butcher [1] and studied extensively in the
literature; see, e.g., [2, 3, 9, 8] and the references therein.

In this paper, we shall consider, for GLMs, boundedness properties similar to
(1.10), (1.11). A generic framework will be presented which facilitates the compu-
tation of stepsize-coefficients v related to such properties. Besides being helpful in
finding stepsize conditions that are sufficient for boundedness, the framework leads
to necessary conditions as well.

The theory in the present paper can be viewed as a (nontrivial) extension of
an approach to monotonicity of GLMs given earlier in the literature; cf. [25]. Its
usefulness will be illustrated briefly in the present paper, whereas in future work the
theory will be applied in a more general analysis for classes of GLMs; cf. [14, 15].

Organization of the paper. Section 2 deals with stepsize-coefficients v related
to explicit bounds for the output vectors of a generic numerical process. Our main the-
orems, Theorems 2.2 and 2.4, provide an algebraic criterion in terms of v, viz., (2.12),
for these bounds to be valid in situations of practical relevance.

In section 3, we give results related to Theorems 2.2 and 2.4. In section 3.1,
we apply the theorems so as to obtain simplified conditions for bounding the generic
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process. We also recover easily a concise criterion for monotonicity obtained earlier in
the literature (but derived differently); cf. [25]. In section 3.2, a lemma is presented
which is helpful when applying the main theorems in the boundedness analysis of
actual GLMs. In section 3.3, we illustrate the significance of the general theory
shortly, by applying it in resolving the question of boundedness for some concrete
numerical methods.

In section 4 we give the proofs of Theorems 2.2 and 2.4.

2. Bounds for a generic numerical process. In this section, we shall study
bounds for the output vectors of a generic numerical process. We are interested in
these bounds, primarily because they facilitate significantly the derivation of actual
boundedness results for given GLMs. In section 2.1 we first describe GLMs, whereas
in section 2.2 we introduce the generic numerical process and relate it to GLMs. In
the sections 2.3 and 2.4 we present criteria for the existence of the above-mentioned
bounds for the generic process.

In all of the following, V denotes again the vector space on which the differential
equation is defined, and || - || stands for an arbitrary given seminorm on V.

2.1. GLMs. The GLM for solving (1.1) depends on parameters ¢;(1 < j < q)
and parameter matrices A = (a;;) € R?!, B = (8;;) € R99, where 1 <1< q. The
method can be written in the following form:

l q
21a) o =3 eyl E AL ST B F((n -1+ ¢)at el (1< <),
j=1 j=1

(21b) Wl =ol <<,

[n—1]

i

]

Here u are input vectors available at the nth step of the method, whereas v

are (intermediate) approximations used for computing the input vectors ugn] for the
next step (n =1,2,3,...); cf.,, e.g., [1], [2, page 338].

Obviously, the Runge-Kutta method (1.2) is an example of (2.1), with I = 1,
qg=s+1, u[ln} =u, ~u(n-At), and a1 = 1,8;; = a;; (for 1 < j <), fi; =0 (for
j=s+1).

The LMM (1.7) is another example of (2.1), with Il = k, ¢ = k + 1, and ugn] =
Un_145 (1 <i <k, n>0), vz["] =Up_21; (1 <i<k+1, n>1). Method (1.7) can be
written in the form (2.1) with ¢; = j—1, A = ([}, B = (), where I denotes the k x k
identity matrix, O the k x (k + 1) zero matrix, and a = (ag,...,a1), b = (bg,...,bp).

For completeness, we note that GLMs are often represented differently from (2.1),
viz., in a partitioned form with parameters w;;, vij, aij, bij, c;, as follows:

l s
(2.2a) Y= Zuijyj[»n_l] + At - ZaijF((n —14¢j)AtY;) (1<i<s),
Jj=1 j=1

l s
22b)  y =S vyl A ST b F((n -1+ ¢)ALY;) (1< <),
j=1 j=1

see, e.g., [8, page 313], [3, page 358]. Here s is the number of internal approximations

[n]

Y;, and ! is again the number of vectors y; - which propagate from step to step.

Clearly, (2.2) is formally of type (2.1) with ¢ = [ + s and ul™ ylm defined, with

A )
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obvious vector notations, by ul” = yl?l ol = (U‘[Z]). In this paper, we aim at

bounding simultaneously Y and y™, in terms of ¥/, so that we find it convenient

to use a representation of the GLM in which Y and y!™ are lumped together. In the
following, we shall thus deal with representation (2.1) rather than (2.2).

DEFINITION 2.1 (boundedness of GLMs). We define method (2.1) to be bounded,
with constant p (for given stepsize At, vector space V, seminorm ||.||, and function
F) if for all N > 1 we have

(2.3) ol < g max [l (for 1 <n <N and1<i<q)
1<5<1

whenever ugn_l],ugn],vl[n} € V satisfy (2.1) (for 1 <n < N).
Note that boundedness implies (1.10) or (1.11), respectively, if method (2.1)
stands for an RKM or LMM in the way indicated above.

2.2. A generic numerical process with a simple form. For studying bound-
edness of (2.1), it is convenient to represent in a concise form all relations involved in
specifying ’UZ[N] (for any given N > 1). We describe now a standard representation of
N consecutive steps of the GLM, to which we will refer in the following as the canon-
ical representation. We combine all vectors Ul[n] (with 1 <i<gand 1<n<N)into
one single vector y = [y;] € V™, where m = N - ¢, and y; € V(1 <4 < m). Further-
more, we introduce shorthand notations for uEO] and F((n — 14 ¢;)At,v). Defining,
forl1<i<land1<j<gq,

[n]

0
(2.4) x; = ug I Yn-1)gti =05 s Fla—ngri(v) = F((n — 14 ¢;j)At,v),

we can rewrite the relations (2.1) (for n = 1,...N) in the following form:
l m
(2.5) yi =Y sz + At Y tFi(y;) (L<i<m).
j=1 j=1

To specify the coefficient matrices S = (s;;) € R™*L T = (t;;) € R™*™_ we denote
the matrices consisting of the last [ rows of A = (o) and B = (5;5) by Ap and By,
respectively. It can be seen that S is made up of ¢ x [ blocks S,, and T of ¢ x ¢ blocks
T,; (1<n<N,1<j5<N), where

(2.6a) S, = A(Ag)" !,
(2.6b) T, ;=0 (for j >n), Tnn=DB, T,;=A(A)" 7 'By (for n > j).

Furthermore, when F': R x V — V satisfies (1.5), then definition (2.4) implies
(2.7) [lv+ 1F; @) <|lv| (for1<i<m, and v € V).

For analyzing boundedness of (2.1), it is sometimes also handy to use noncanonical
representations of N steps of the method; cf., e.g., section 3.3.2. Such representations
share with the canonical representation the form (2.5), with property (2.7), but vio-
late (2.6). Therefore, unless specified otherwise, in the following discussion of (2.5)
we shall not assume S, T to satisfy (2.6), so that the conclusions to be obtained about
(2.5) can be applied both to canonical and noncanonical representations of method
(2.1).
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We shall interpret z; € V and y; € V as input and output vectors, respectively, of
the generic process (2.5). In the situation (2.5), (2.7), we shall focus on the bound

2. < w- 1 (for 1 <i<m).
(28) loill < g g, | (for 1< i <m)

We shall say that process (2.5) satisfies the bound (2.8) (for given stepsize At, vector
space V, seminorm ||.||, and functions F; : V — V) if (2.8) holds whenever x; and
yi € V satisty (2.5).

Clearly when (2.5) stands, as above, for N versions of (2.1) via the relations
(2.4), (2.6), then boundedness of the GLM, defined in section 2.1, corresponds to the
situation where process (2.5) satisfies the bound (2.8) with constant u independent
of N=1,2,3,....

In sections 2.3 and 2.4, we shall present, without proof, the basic results of the
paper: Theorems 2.2, 2.4. The theorems give conditions on the ratio At/7, in order
that process (2.5) with arbitrary parameter matrices S = (s;5), T = (t;;) satisfies the
bound (2.8).

2.3. Satisfying the bound (2.8) for arbitrary functions F;. In this sub-
section, we shall give our first main result, Theorem 2.2. The theorem deals with ~
and p such that the following general and fundamental property is present:

(2.9) Condition 0 < At < - 79 implies that process (2.5) satisfies the
bound (2.8) whenever V is a vector space with seminorm || - ||
and arbitrary functions F; : V — V satisfy (2.7).

Theorem 2.2 concerns not only the above property (2.9), but also the following weaker
property (2.10), in which the focus is on the mazimum norm, defined by ||z]e =
max; |¢;| (for vectors x € R™ with components &;).

(2.10) Condition At = v - 79 implies that process (2.5) satisfies the
bound (2.8) when V.= R™, || - || = | * ||, and arbitrary
Fi : R™ — R™ satisfy (2.7).

The theorem below will show that the general property (2.9) is already present
as soon as (2.10) is in force. Moreover, the theorem will give an algebraic criterion,
in terms of v, u, for (2.9), (2.10) to be valid.

In formulating the criterion we need some further notations. For any m x k matrix

A = (a;5), we put ||Al|oc = maxzo %, and we recall the well-known formula

[ Alloc = m?XZ |ai;].
i

We define |A| = (|a;;|) and denote the spectral radius of square matrices A by spr(A).
For values + such that I + ~T is invertible, we introduce the matrices

(211) P=(pij) =T +1T)7'(0T), Q= (g;5) =T +1T)"", R=(ri) =QS.
Our criterion—for properties (2.9), (2.10)—involves the following requirements:

(2.12a) I +~T is invertible,
(2.12b) spr(|P]) < 1,
(2.12¢) Iz =P Rl < g
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THEOREM 2.2 (criterion for the bound (2.8) when arbitrary F; satisfy (2.7)).
Consider process (2.5), with arbitrary coefficient matrices S = (si;) and T = (t;5),
and let positive 79,7, 1 be given. Then condition (2.12) is necessary and sufficient for
property (2.9) as well as for (2.10).

Since property (2.9) is a priori stronger than (2.10), the essence of the above
theorem is that the algebraic condition (2.12) implies the (strong) statement (2.9),
whereas already the (weaker) statement (2.10) implies (2.12).

Clearly, when ~ satisfies (2.12a), (2.12b), the theorem shows that the smallest p,
for which statements (2.9), (2.10) hold, is equal to

(2.13) p= =PRI

In many practical situations, condition (2.12¢) is the essential requirement rather
than conditions (2.12a) or (2.12b). One easily sees that the last two conditions will
be satisfied, with any v > 0, if T is lower triangular with nonnegative diagonal
entries. This applies notably to the situation where T is strictly lower triangular,
which corresponds to a numerical process that is explicit.

We note that if boundedness (in the sense of Definition 2.1) is analyzed for a given
GLM via the canonical representation, one arrives by Theorem 2.2 at requirement
(2.12¢) uniformly for m = Ng, N > 1. This is in general not easy to verify. More
simple conditions and applications will be presented in section 3.

Finally, we note that if the entries of the matrices P, R depend only on v and the
coefficients of the underlying GLM (as is the case in the canonical representation),
the stepsize-coefficient v for boundedness depends only on the method and not on the
class of problems under consideration, characterized by 7 in (1.5) or (2.7).

2.4. Satisfying the bound (2.8) for restricted functions F;. Our second
main result, Theorem 2.4 below, deals with important situations not adequately cov-
ered by Theorem 2.2. It is often not natural to allow—as in Theorem 2.2—that all
functions F; are different from each other.

For instance, if in (2.1) we have ¢; = ¢; for some i # j or if the differential equation
is autonomous, then N successive applications of (2.1) are represented canonically via
(2.4), (2.6) by a process (2.5) with F; = F; for some, or all, indices i # j.

Also when ¢; # ¢; (for all i # j) and the differential equation is nonautonomous,
it can happen that the canonical representation, obtained via (2.4), (2.6), amounts to
a process (2.5) with F; = F}; for some indices 7 # j. According to (2.4), this situation
occurs as soon as ny + ¢; = na + ¢; for some n1,n9, 14, j with niq+17 # nog+j. When
a general LMM (cf. (1.7)) is represented as a GLM as indicated in section 2.1, then
N > 2 applications of the GLM provide an example of this situation.

Below we shall see that, in cases where some of the functions F; are equal to each
other, condition (2.12) can be an unnecessarily strong requirement on  in order that
the stepsize restriction 0 < At <« - 75 implies the bound (2.8).

In order to describe general situations where some of the functions F; are equal
to each other, we consider index sets J, with J, C {1,...,m} (for 1 < p < r) and
functions F; : V—V (for 1 <i < m) such that

(2.14)  Jy,...,J, are nonempty and mutually disjoint, with Uj_; J, = {1,...,m},
(2.15)  F; = F; whenever i and j belong to the same index set J,.

Below, we shall deal with the following variant of property (2.9), in which the functions
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F; are restricted according to (2.15):

(2.16) Condition 0 < At < - 719 implies that process (2.5) satisfies the
bound (2.8) whenever V is a vector space with seminorm || - || and
functions F; : V — V satisfy (2.7), (2.15).

We will see that finding a criterion for (2.16) is more subtle an issue than for
(2.9). Tt will turn out to be convenient to consider, in addition to the above property
(2.16), the following weaker version:

(2.17) Condition At = ~ - 7 implies that process (2.5) satisfies the bound
(2.8) whenever V.= R™ with seminorm || - || and F; : R™ — R™
satisfy (2.7), (2.15).

Note that, because arbitrary seminorms occur in (2.17), this weaker version is not
related to the original property (2.16) in the same way as the weaker version (2.10) is
related to (2.9). An adaptation of (2.10), for the situation at hand, reads as follows:

(2.18) Condition At = v - 79 implies that process (2.5) satisfies the bound
(2.8) when V=R" || || = || - ||c, and F; : R™ — R™ satisfy (2.7),
(2.15).

By Theorem 2.2, condition (2.12) is still sufficient in order that (2.16), (2.17),
and (2.18) hold. But, the following simple Example 2.3 shows that the condition
is no longer mecessary; cf. also section 3.3.2 for a more natural, but less simple,
counterexample.

EXAMPLE 2.3. Consider process (2.5) withl=1,m =2, and 8,1 =1, t;1 = 3,
tio = —2. Suppose (2.14), (2.15) with r =1, J; = {1, 2}, i.e., F1 = Fy, and consider
v >1/4.

One easily sees that requirement (2.12a) is fulfilled, and spr(|P|) > 1. Therefore,
condition (2.12b) is violated.

On the other hand, the process at hand is nothing but the (backward Euler) method
ya = y1 = 1+ AtF(y1), which is of the form (2.5) with [=m=1andS = 1, T=1.
Condition (2.12) is fulfilled by S,T, with =1, for any ~ > 0.

In line with Theorem 2.2 (applied with g,f), we can conclude that the original
process (with m = 2) must have property (2.16), with u = 1, for any v > 0, although
(2.12) is violated for v > 1/4.

In the following, we will see that the violation of condition (2.12) while (2.16)
is valid—as in the above example—is a phenomenon related to reducibility of the
generic process (2.5). We will deal below with two irreducibility assumptions under
which (2.12) cannot be violated.

In formulating these assumptions, we denote the ith row and jth column of any
matrix A by A(i,:) and A(:,j), respectively. By T = (;;) we denote the matrix
defined by

tij = ti; (if S(4,:) #0), &;; =0 (if S(4,:) = 0).

By [ST] and [ST] we denote the m x (I + m) matrices whose first | columns equal
those of S and last m columns equal those of T and T, respectively.
We will use the irreducibility assumption

(2.19)
[ST](i,:) # [ST](j,:) (if i # j are in the same J, and T'(:,i) #0, T(:,j) #0),
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as well as the slightly stronger assumption

(2.20) R
[ST)(i,:) # [ST](j,:) (if i # j are in the same J, and T'(:,i) #0, T(:,j) # 0).

Clearly, if r < m and there is no irreducibility in the sense of (2.19), then process
(2.5)—with F; satisfying (2.15)—is equivalent to a process (2.5) with a smaller value
of m.

THEOREM 2.4 (criterion for the bound (2.8) when F; satisfy (2.7), (2.15)). Con-
sider process (2.5), with arbitrary coefficient matrices S = (si;) and T = (t;;). Let
positive 1o, 7y, u be given, and assume (2.14).

(i) Assume irreducibility in the sense of (2.19). Then condition (2.12) is necessary
and sufficient for property (2.16), as well as for (2.17).

(ii) Assume irreducibility in the sense of (2.20). Then condition (2.12) is necessary
and sufficient for property (2.16), as well as for (2.18).

The above statement (i) shows that, under the irreducibility assumption (2.19),
property (2.17) implies the algebraic property (2.12). On the other hand, statement
(ii) reveals that under the stronger irreducibility assumption (2.20), already the weaker
property (2.18) implies (2.12). The natural question thus arises of whether statements
(i), (ii) can be combined and strengthened into the following proposition.

(iii) Assume irreducibility in the sense of (2.19). Then condition (2.12) is neces-
sary and sufficient for property (2.16), as well as for (2.18).

The following counterexample answers the above question in the negative: state-
ment (iii) is in general not true!

EXAMPLE 2.5. Consider process (2.5) withl =1,m =3, and s11 =0, s21 =
s3g1=1,t1 =1, t1a=1t13=0, tao =130 =3, ta3 = t33 = —2. Suppose (2.14),
(2.15) with r =1, 33 = {1,2,3}, i.e., F} = F5 = F3, and consider v =1/4.

The irreducibility assumption (2.19) is fulfilled. Furthermore, one easily sees that
(2.12a) s fulfilled, but spr(|P|) = 1. Therefore, condition (2.12) is violated.

On the other hand, for At = 70/4 and V.|| - ||, F; as in (2.18), it can be seen
that |yall = |AtFE()| = 0, lly2ll = llysll < lleall. With p = 1, we thus have
property (2.18).

Theorem 2.2 can formally be viewed as a special case of Theorem 2.4; the latter
theorem, with r = m and the trivial index sets J, = {p}, implies the former. We have
formulated Theorem 2.2 separately in view of its importance and simplicity: it does
not need (2.14), (2.15) nor (2.19), (2.20). Moreover, by formulating first Theorem 2.2
explicitly, we could show in a natural way, via Example 2.3, that some additional
(irreducibility) assumption is needed in order that condition (2.12) is the appropriate
criterion when some F; are equal.

3. Results related to the main theorems.

3.1. Alternative conditions for properties (2.9), (2.16). In this section we
study process (2.5) with arbitrary coefficient matrices S = (s;;) and T' = (t;;). We
shall give conditions, for properties (2.9) and (2.16), which are in general simpler and
easier to check than (2.12). In deriving these conditions, we shall use a lemma about
condition (2.12b) which will be presented first in section 3.1.1.

The same notations will be used as in section 2, notably (2.11), and any inequal-
ities between matrices or vectors should be understood entrywise or componentwise,
respectively.

3.1.1. Background regarding condition (2.12b). The following lemma,
about condition (2.12b), will be used in sections 3, 4.
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LEMMA 3.1 (interpretations of (2.12b)). Assume (2.12a). Then each of the
following three requirements is equivalent to (2.12b):
(i) I —|P| is invertible with (I — |P|)~! > 0;
(ii) I —|P] is invertible, and spr(|P|) < 1;
(iii) There exist no real scalar A and vector ¢ € R™ with

(3.1) M —|P)p=0, ¢#0, ¢>0, A>1

Proof. One easily sees that (2.12b) implies each of the properties (i), (i), (iii).
Conversely, applying the Perron-Frobenius theory as presented, e.g., in [13, page 503],
it follows that (2.12b) is implied by (ii) as well as by (iii).

We shall complete the proof of the lemma by assuming (i) and proving (iii).
Suppose (iii) does not hold, i.e., there are X, ¢ satisfying (3.1). Then 0 > —p =
(I —|P])~H (A= 1)¢} >0, so that ¢ = 0, which contradicts (3.1). O

3.1.2. Simplified conditions for properties (2.9), (2.16), with arbitrary u.
The following neat condition on v will turn out to be quite useful:

(3.2a) I +~T is invertible,
(3.2b) P >0,
(3.2¢) R>0.

Assume (3.2a) and (3.2b) are fulfilled. We then see from Lemma 3.1 and the
formula

(3.3) I-P=Q=(I+~T)"

(which follows from (2.11)) that condition (2.12b) is equivalent to spr(P) < 1.
For matrices S, T satisfying (3.2), (2.12b), we have

I =P Rl = (1 = P) 7' Rl = Q7 QS lsc = ISl o0-

For such matrices we have also S = (I — P)"'R, with (I — P)~! > 0, so that S > 0
and [|(I — [P|) " R|]|oc = max; 3 si;.

Consequently, under assumption (3.2), the conditions (2.12b), (2.12¢) are equiv-
alent to

(3.4) spr(P) <1 and Zsij <p (1<i<m).
J

In view of this equivalency, we have the following useful corollary to Theorems 2.2, 2.4.

COROLLARY 3.2 (criterion for properties (2.9), (2.16) when P >0, R > 0). Let
arbitrary matrices S = (si;), T = (tij) and positive values 10,7, 1 be given such that
(3.2) is fulfilled. Then the following two statements are valid:

(i) Condition (3.4) is necessary and sufficient for property (2.9).

(ii) Assume (2.14), (2.19). Then (3.4) is necessary and sufficient for property

(2.16).

The following corollary to Theorem 2.2 is useful in cases where (3.2a), (3.2b) hold,
but (3.2c) is violated. It can be applied when constants g;, o, T are available such that
the matrices R = (ry;), T = (ti;), P = (pi;) satisfy

(3.5) spr(P) <1 and Z Irik] < 05, Z 0j <o, max;;|ti| <.
k J
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COROLLARY 3.3 (condition for property (2.9) when P > 0). Let arbitrary ma-
trices S = (si;), T = (ti;) and positive values 19,y be given such that (3.2a), (3.2b)
are fulfilled. Then condition (3.5) guarantees property (2.9) with

p=max g; +7-max Y _|ti;lo; < (1 +77)o.
J g J

Proof. In view of Theorem 2.2, it is sufficient to prove (2.12b), (2.12¢) for the
above p. Condition (2.12b) follows, from Lemma 3.1 and (3.3), as above. Further-
more, condition (2.12¢) is fulfilled because ||(I — |P|) ™| R]|loc = ||[(I — P)"YR|||c0 =
(L + D) B[l < [[Rllcc + A TR0 < max;o; +7-max; 3, [tijlej. O

3.1.3. Simplified criterion for properties (2.9) and (2.16), with g = 1.
Throughout this subsection we assume that © =1 and the matrix S = (s;;) satisfies

(3.6) St +Sig+ - F+sau=1 (1<i<m).

Assumption (3.6) is, e.g., fulfilled when (2.5) stands for the canonical representa-
tion of N steps of a method (2.1) with coefficients «;; satisfying

(3.7) a1+ o+ F+ag=1 (1<i<g),

as follows easily from (2.6a). GLMs are often represented with coefficients ;; such
that (3.7) is in force; cf., e.g., the examples in section 3.3.

We shall find that condition (3.2) is the appropriate criterion for properties (2.9),
(2.16) by proving the equivalence of (3.2) and (2.12) (with g = 1). In our proof we
shall use the notation Ej to denote the £ x 1 matrix with all entries equal to 1.

First, assume (3.2). In order to prove (2.12b), (2.12c) (with u = 1), we note that
PE,, = PSE; = (I — Q)SE, = E,, — RE; < E,,. Tt follows that ||P|loc < 1, so that
spr(P) < 1. Hence, (3.4) is in force, which in section 3.1.2 was proved to be equivalent
to (2.12b), (2.12¢).

Conversely, assume (2.12) (with g = 1). We have E,, = SE; = (I — P)"'RE, <
(I — |P))"YR|E, < Ep. Hence (I — |P|)"YR|E, = E,., which implies |P|E,, +
|R|E; = E,, = PE,, + RE;. Therefore, (|P| — P)E,, + (|R| — R)E;, = 0, so that
P=|P|>0,R=|R| >0, ie., (3.2).

In view of the equivalency of (3.2) and (2.12), the Theorems 2.2, 2.4 yield the
following corollary, which is closely related to a monotonicity result formulated earlier
in the literature (but derived differently); cf. [25].

COROLLARY 3.4 (criterion for properties (2.9), (2.16), with = 1). Let arbitrary
matrices S = (s;5), T = (tij) and positive 19,y be given. Assume (3.6). Then the
following two statements are valid:

(i) Condition (3.2) is necessary and sufficient for property (2.9) with p = 1.

(ii) Assume (2.14), (2.19). Then (3.2) is necessary and sufficient for (2.16) with

w=1.

3.2. The matrices T, P, and R for the canonical representation of GLMs.
By representing N steps of method (2.1) in the form (2.5) canonically (cf. (2.4), (2.6)),
and a subsequent application of one of the Theorems 2.2, 2.4 or Corollaries 3.2, 3.3,
3.4, one can obtain conditions for boundedness of the GLM. Because such conditions
involve the corresponding T, P, and R (cf. (2.11)), we shall study these matrices in
the subsequent Lemma 3.5. The lemma will be applied in section 3.3.
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From (2.6), (2.11), we see that the matrices S, T, P, Q, R, respectively, correspond-
ing to the canonical representation of N steps of (2.1) reduce, for N = 1, simply to

(3.8) A= (ai;), B=(8y), K=({I+yB)'(yB), L=({I+vB)"', M =LA.

The following lemma relates (conditions on) T, P, R for any N > 1 directly to the
simple matrices (3.8). We denote by Ky, My the matrices consisting of the last [ rows
of K and M, respectively. Note that My equals the I x [ stability matrix M (z) of the
GLM at the point z = —v; cf., e.g., [3, page 381].

LEMMA 3.5 (on the matrices T, P, R of the canonical representation). For given
v >0, p>0, and integer N > 1, the following statements are valid:

(i) Matriz T satisfies (2.12a) if and only if I + B is invertible.

(ii) If (2.12a) holds, then matriz P satisfies (2.12b) if and only if spr(|K|) < 1.

(i) If (2.12a) holds, then R is made up of q x 1 blocks R, and P of q x q blocks

P, j, where1<n<N,1<j<N, and

R, = M(Mo)n_l,
Pn,j =0 (] > ’]’L), Pn7n = f{7 Pn,j — M(Mo)n*jflKO (TL > ])

Proof. Part (i) follows from (2.6b), and (ii) follows from the expressions for P, ;
given in (iii).

To analyze the blocks R,,, we rewrite (I +yT)R = S in terms of these blocks,
using (2.6): 72?:_11 A(Ao)" 7 'BoR;+(I+vB)R,, = A(Ap)" ! (n > 1). To give this
relation a more convenient form, we introduce the [ x ¢ matrix H = [OI], composed of
the I x (¢ — ) zero matrix O and the [ x [ identity matrix I. Clearly, Ag = HA, By =
HB,Ky=HK, My=HM. Weput A= AH,M = MH, so that

n—1
v A" IBRj+ (I +4B)Ry = A" A (n > 1).

j=1

We modify this relation by premultiplying it with A and replacing n by n—1. Subtract-
ing this modified equality from the original one, we obtain (I +vB)R,, = AR,,_1, s0
that R, = MR, _1(n > 2). Hence R,, = (M)" 'Ry = (M)"*M = M(Mo)"*(n >
1).

) To complete the proof, we conclude from (I +~T)P = 4T and (2.6b) that P
has a block Toeplitz structure with ¢ x ¢ blocks P, ; = P,,_j+1, where P, = 0 (k <
0), P, = K. Similarly as above we find "/Zf;ll A*IBP; + (I + vB)P, = yA* 1B
(k > 1) and (I +yB)P, = AP,_y, so that P, = (M)* 'K = MM 2K, (k
>2). O

3.3. Examples of actual boundedness results obtainable from the the-
ory. This section serves only to make evident the practical relevance of the generic
process (2.5) and the applicability of the above theory to the boundedness analysis of
given GLMs; see Definition 2.1. Accordingly, below we will illustrate the theory by
applying it just to a few actual numerical methods. In future work (cf. [14, 15]), we
intend to use the theory for a more general analysis of classes of GLMs.

For ease of presentation and also to illustrate (2.14), (2.15), and Theorem 2.4
with r < m, we deal throughout this section with autonomous problems, i.e., F' in
(1.1) is independent of ¢, and (1.5) reduces to

(3.9) lv+ 1o F ()| < |jv|| (for v € V).
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Below we shall study boundedness of various methods by looking for stepsize-coefficients
~ and constants p such that

(3.10) Condition 0 < At < -1y implies boundedness with constant p (cf. Def-
inition 2.1) whenever V is a vector space with seminorm || - || and
F :V — V satisfies (3.9).

Clearly, when (3.10) holds with p = 1, then 7 is a stepsize-coefficient for mono-
tonicity.

3.3.1. Two explicit RKMs. Following Gottlieb & Shu [6], we consider two
explicit RKMs (1.2) with s = 2, the nonzero coefficients of which are given by (3.11)
and (3.12), respectively:

(311) as1 = ]., az]p = agzz = 1/2,
(312) a1 = —20, az]p = 41/40, azg = —1/40

Both methods are of second order and yield identical numerical approximations when
applied to linear autonomous problems.The first method is monotonic ((3.10) with
w = 1) with stepsize-coeflicient v = 1, whereas for method (3.12) there exists no
positive stepsize-coefficient vy for monotonicity; cf., e.g., the paper just mentioned and
[4] or [11].

To analyze for both methods the boundedness property (3.10) (with arbitrary
i > 1), we represent the methods as GLMs (2.1) with coefficient matrices A, B—as
indicated in section 2.1—and consider the corresponding canonical representation of

N > 1 steps; cf. (2.4), (2.5), (2.6). Because F' is independent of ¢, we have properties
(2.14), (2.15) with r =1, 33 = {1,...,m}. From (2.6) one sees that (2.19) and (2.20)

are fulfilled, so that Theorem 2.4 can be applied. It follows that property (3.10) is
present if and only if condition (2.12) is fulfilled (for all N > 1). From Lemma 3.5 we
see that conditions (2.12a), (2.12b) are fulfilled, with any v > 0, for both methods.
In order to express the dependence of (2.12¢c) on N, we put uy = ||(I — |P]) "} R|||so-

For method (3.11), it is possible to find by a computation based on Lemma 3.5
that, when N > 1,

py=1 (for0<y<1), py=(1+2y(y—1)" (fory>1).

Hence, for any given p > 1, the largest stepsize-coefficient v, for which method (3.11)
has the boundedness property (3.10), is equal to v = 1.

For method (3.12), a similar computation yields uy = (1+ 25 +~%)V 1 (1+407)
for N > 1 and 0 < v < 2. From this expression we can conclude that there exists
no positive v for which method (3.12) has the boundedness property (3.10) with any
w1

We think these conclusions about methods (3.11), (3.12) nicely supplement and
confirm the discussion of the methods, as presented in Gottlieb & Shu [6]: method
(3.11) is superior to (3.12) not only regarding monotonicity but also with respect to
boundedness.

We have not displayed the details of the computations leading to the above ex-
pressions for uy because we want to keep the size of the paper within reasonable
limits, and we intend to report on these kinds of computations, in detail and greater
generality, in [14].
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3.3.2. A two-stage RKM depending on a parameter 6. We shall give an
example showing that the canonical representation of N steps of an (irreducible) RKM
can fail to satisfy the irreducibility condition (2.19), with the result that Theorem 2.4
does not yield a necessary condition for boundedness. The example will also provide
an instance of a noncanonical representation yielding a boundedness result that is not
obtainable via the canonical representation. Finally, it will show, unlike the examples
in section 3.3.1, that the restrictions on y for boundedness of RKMs can be less severe
than for monotonicity.

We consider the two-stage RKM, given by (1.2) with s = 2, a11 = a12 = 0,
as1 = a3 = 1—0, azs = az 2 = 0, with real parameter §. We write the method

concisely as (2.1) with [ =1, ¢ =2, A = G), B = (190 g), and consider the

corresponding canonical representation (2.5) of N consecutive steps of the method.
We see from Lemma 3.5 that (2.12a), (2.12b) hold if and only if 14+2v6 > 0. Assuming
this inequality is to be fulfilled, it is possible to find by a computation using Lemma 3.5
that ux = ||(I — |P]) 7 |R|||eo equals uny = AN (N > 1), where

L@ -1l ale -1

A TFA0—0]
We see that A = 1 if and only if
(3.13) 0<0<1, ~v(1-0)<1.
This does not allow us to conclude via Theorem 2.4—with r =1, J; = {1,--- ,;m} as

in section 3.3.1—that condition (3.13) is necessary for boundedness (property (3.10)
with any fixed p > 1), because the irreducibility condition (2.19) on [ST] is violated
for N > 2.

On the other hand, Theorem 2.4 can be applied—with r =1,3; ={1,--- ,m}—
to the canonical representation for N = 1, because [ST| = [AB] satisfies (2.19). Since
w1 = A, condition (3.13) is necessary and sufficient for monotonicity ((3.10) with
w = 1); this follows also, e.g., from Corollary 3.4 and from [4] or [11].

To prove that boundedness is possible under a weaker condition than (3.13), we
represent N steps of the method—not canonically—by (2.5) with [ = 1, m = N,
Spi =1, ty; =0( >n), ty; =0 (J =n), ty; =1 ( <n), and y, = uy,
x1 = ug+At(1—0)F(up). Since [ST] now satisfies (2.19) (withr =1, 1 = {1,...,m}),
we can apply, e.g., Corollary 3.4 to the situation at hand. A computation shows that
(3.2) holds if and only if 0 < 6, v(1 —0) < 1. Hence, for any § > 1, v > 0, the
conditions (1.6), (3.9) imply that

G—l)At)uO _ o=na

unll < flzall = || (1 + 4 o + 7o (u0)) | < pulluoll,

70 70

with p=142(0 — 1)v.

In conclusion, for # > 1, there exists no positive stepsize-coefficient for mono-
tonicity, whereas any v > 0 is a stepsize-coefficient corresponding to the boundedness
property (3.10), with u =14 2(8 — 1).

3.3.3. One-leg Adams—Bashforth method. We consider the so-called one-
leg version of the second order Adams—Bashforth method,

3 1
(3.14) Up = Up_1 + AtF (gun_l - §Un_2) ;
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cf., e.g., [2, 9, 8]. This method is not monotonic in that there exists no positive y
with the property that (3.9), (3.14), (1.6) always imply ||uy|| < max{||un—1], ||[un—2l }-
This follows, e.g., directly from Spijker [24, Theorem 3.3].

We will see that, in spite of the above negative result, there exist positive v and
w such that

(3.15) lunll < w- max{||uo|l, [|ui||]} (for 0 < At <~ -7 and all n > 2),

as soon as (3.9) and (3.14) (for n > 2) are in force.

Below we shall prove this boundedness result by rewriting method (3.14) as a
GLM and applying Corollary 3.3 in combination with Lemma 3.5 to the canonical
representation; cf. (2.4), (2.5), (2.6).

We introduce, for n > 1, the vectors UE”] = —2Un_1+ Su,, vén] = Uy, v:[,)"] = Upy1,
and ul" ! = u,_1, W'Y = u,,, so that (3.14) is equivalent to the GLM (2.1), with
1 3
3 3 0 0 O
g=3, =2, and A= 0 1 , B=| 010 0
0 1 1 0 0

Clearly, if this GLM satisfies (3.10) with positive 7, s, then method (3.14) has the
boundedness property mentioned above; cf. (3.15).

In order to apply Corollary 3.3 to the canonical representation of the GLM, we
have to check conditions (3.2a), (3.2b), and (3.5). Because B is strictly lower trian-
gular, we see directly from Lemma 3.5(i) that (3.2a) is fulfilled for any v > 0.

To analyze (3.2b) we consider, for any v > 0, the expressions for the blocks P, ;
given by Lemma 3.5(iii). One easily sees that P, ; > 0 (j > n). Furthermore, it can
be seen that P, ; > 0 (for j =n —1 and j = n —2) if and only if v < 4/9. From now
on, we assume y = 4/9. In the analysis of P, ; with j <n — 3, via Lemma 3.5(iii), it
is convenient to use the following representation for the powers of Mj:

(Mo)k _ ( Tk—1 Yk-1 ) ,

Tk Yk

where zj41 = 325 + 251, 2o = 0,21 = 2, and Yr1 = 35Uk + 2Yk—1, Yo = 1,y1 = %
(for kK > 1). Substituting this representation (with ¥ = n — j — 1) in the expression
for P, ; of Lemma 3.5(iii), it can be seen that P, ; > 0 (for j < n — 3), which proves
(3.2b).

The first inequality in (3.5) is fulfilled—with spr(P) = O—because the blocks
P, are strictly lower triangular. A computation, using the above representation for
(Mp)¥, shows that the remaining inequalities in (3.5) are fulfilled as well, with g; = 2
(for j =1), oj =37"[2" — (=1)"] (for j = 3n —2,n > 2), p; = 37" 1[27F2 — (—1)"]
(for j = 3n—1,n > 1), g; = 377223 4+ (=1)"] (for j = 3n,n > 1), and 0 =
31/4,7 = 3/2. The upperbound (1 + v7)o of Corollary 3.3 thus amounts to 155/12,
from which we conclude that method (3.14) has the boundedness property (3.15),
with v =4/9 and p = 155/12 ~ 12.9.

A smaller value for u can be obtained by a straightforward—Dbut slightly longer—
computation of the expression 1 = max;g; + - max; Zj |tij]0;; see Corollary 3.3. In
this way one can arrive at a similar conclusion as above, but with v = 4/9 and the
better value p = 31/9 ~ 3.4.
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We note, for completeness, that the above results could not have been obtained
by a similar application of Corollary 3.2, instead of Corollary 3.3, because condition
(3.2¢) is violated, in the situation at hand, for all N > 1 and v > 0.

3.3.4. A two-stage GLM. Our last example illustrates that conclusions about
boundedness can sometimes be reached by a rather short calculation. We consider
the second order method for solving (1.1) (with F(¢t,v) = F(v)):

(3.16a) ul™ = P oy Y

(3.16b) ul = o +At-F(u[1 M,

where u[ln_l] ~ u((n — 1/2)At) and u[n U~ u(nAt) (n = 1,2,3,...). We write
the method as (2.1), with [ = ¢ =2, A = (_1 f), B = 8),
corresponding canonical representation (2.5); cf. (2.4), (2.6). Because the matrix [ST]
satisfies the irreducibility condition (2.19) with r = 1,J; = {1,...,m}, we can apply
Theorem 2.4 in the situation at hand.

Let any v > 0 be given. From Lemma 3.5 we see easily that the corresponding
matrices T, P satisfy conditions (2.12a), (2.12b). By Theorem 2.4, the boundedness
property (3.10) thus holds, for any given y, if and only if uy = ||(I — |P|) 7! R]| is
such that sup{uy : N > 1} < p.

Because (I — |P|)"YR| > |R|, we see from Lemma 3.5(iii) that uy > ||R||cc >

| M¥|| s, with M as in (3.8). From the expression M = (_71 L —22w>’ it follows that

spr(M) =~ 4+ +/1+~2> 1, so that uy — oo for N — oo.
We conclude that there is no boundedness, in the sense of (3.10), for any positive
~ and p.

4. Proof of Theorems 2.2 and 2.4. Because Theorem 2.2 follows from Theo-
rem 2.4 by choosing in the latter theorem the trivial index sets J, = {p} (for 1 < p <
m =r), it is enough to prove below Theorem 2.4.

The sufficiency of condition (2.12), in parts (i) and (ii) of Theorem 2.4, is a direct
consequence of Proposition 4.2, to be given in section 4.1, and the fact that (2.9)
implies the three properties (2.16), (2.17), and (2.18) (for any index sets J, as in
(2.14)).

The necessity of condition (2.12), in Theorem 2.4, follows directly from Propo-
sition 4.6, to be given in section 4.2, and the fact that property (2.16) implies both
(2.17) and (2.18).

4.1. Sufficiency of condition (2.12). In the following, we shall write (2.5)
and similar relations more concisely by using the following notations relevant to the
vector space V. For any integer £k > 1 and vectors zi,...,x, € V, we denote the
vector in V¥ with components z; by

and consider the

/N
(]

T
z=[z;] = € V.
T

Furthermore, we denote with a boldface letter the linear operators from V* to Y™

determined in a natural way by m x k matrices: for any matrix A = (a;;) € R™*k

and r = [z;] € V¥, we define A(x) = y, where y = [y;] € V™ is given by y; =
k )

2jm1 Gigry (1 <i<m).
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We combine the vectors z; and y;, occurring in (2.5), into vectors z = [z;] € V!
and y = [y;] € V™, respectively. Furthermore, for given functions F; : V. — V
(1 <i < m), we define a function F, from V™ to V™, by F(y) = [Fi(y;)] € V™ for
y = [y;] € V™. With these notations, the relations (2.5) can be written as an equality
in V™:

(4.1) y =Sz + At- TF(y).

The subsequent lemma is a variant to Spijker [25, Lemma 4.1]. It will be useful in
the present section for proving Proposition 4.2 and later on for proving Proposition 4.6.
We shall use the notations (2.11) and relate (4.1)—with F; satisfying (2.7), (2.15)—to
the conditions

(4.2a) y=Rx+ Pz, with ||z;|| < ||yl (1 <i<m),
(4.2b)  y; # y; whenever z; # z; and 4, j belong to the same index set J,.
LEMMA 4.1 (reformulation of (4.1) with F; satisfying (2.7), (2.15)). Let 7o > 0,

v >0, I +~T invertible, and assume (2.14). Let x = [z;] € V! and y = [y;] € V™ be
given. Then the following three statements are equivalent:

(4.3) The vectors x,y satisfy (4.1) for some At with 0 < At <~ -1y and
some functions F; : V=V satisfying (2.7), (2.15);

(4.4) The vectors x,y satisfy (4.1) with At = ~ - 19 and some functions
F; .V =V satisfying (2.7), (2.15);

(4.5) There exists a vector z = [z;] € V™ such that (4.2) holds.

Proof. Assume (4.3). In order to prove (4.4), we define § = At/(y7) and F; =
0 - F;, so that x,y satisfy (4.1) also with At = ~ - 79 and F; replaced by F;. Clearly,
F; = Fj for i, j in the same index set, and |[v+710F;(v)|| = [|(1—60)v+0[v+70F;(v)]|| <
lv]]. This implies (4.4).

Assume (4.4). In order to prove (4.5), we rewrite (4.1) as
(I +~4T)y = Sz +~T[y + 1F(y)),

from which we see that x,y satisfy (4.2a) with z = [2;] = y + 70F(y). Furthermore,
when z; # z; and 4, j belong to the same index set J,, we have y; + 70F;(y;) # y; +
70 F;(y;), which implies (4.2b). Hence, (4.5) holds.

Assume (4.5). We shall prove (4.3). For i € J, we define F;(v) = (1/70)(zx —yx) (if
v =yi, k €J,) and F;(v) = 0 (otherwise). In view of (4.2b), this is a proper definition,
and F; = F} for 4,7 in the same index set, i.e., (2.15). Furthermore, we see that x,y
satisfy (4.1) with At = - 79. Finally, for ¢ € J,, we have ||v+ 10 F;(v)| = ||z&|| < ||v||
(ifv=yi, k€J,) and ||v+ 70F;(v)|| = ||v|| (otherwise), so that (2.7) is fulfilled. This
completes the proof of (4.3). O

PROPOSITION 4.2 (sufficiency of condition (2.12) for property (2.9)). Let 7o > 0
be given, and assume v, u are positive constants such that (2.12) holds. Then process
(2.5) has the boundedness property (2.9).

Proof. Assume condition (2.12) is fulfilled, and consider x;,y; satisfying (2.5) in
the situation where (2.7) holds and 0 < At < v - 79. Applying Lemma 4.1 (with the
trivial index sets J, = {p}, 1 < p < r =m), we have (4.2a), from which we obtain

Myelll < vl + 1Pzl < (l7all] + [P[llyall), with [r:] = Ra.
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Consequently, (I —|P|)[||ly:ll] < [||r:]]- By Lemma 3.1, the matrix I — |P| is invertible
with (I — |P|)~! > 0. Therefore, [||y;||] < (I — |P|)~*[||r:]|], which implies

(4.6) [lysll] < (1 = [P~ R[]

An application of (2.12¢) shows that the components in the right-hand member of the
last inequality do not exceed p - (max;||z;||), which completes the proof of Proposi-
tion 4.2. d

4.2. Necessity of condition (2.12). In this section we shall prove the necessity
of condition (2.12) for properties (2.17) and (2.18), under the irreducibility assump-
tions (2.19) and (2.20), respectively. We assume throughout the section that 79,7,
are given positive constants and, unless stated otherwise, that J, are arbitrary given
index sets of type (2.14).

4.2.1. Formulation of Proposition 4.6. To demonstrate the necessity of con-
dition (2.12), we will formulate Proposition 4.6. To prove this proposition we will
need three lemmas, the first of which is as follows.

LEMMA 4.3 (invertibility of I +~T'). Property (2.17), as well as property (2.18),
implies that the matriz I +~T is invertible.

Proof. Assume (2.17) or (2.18). Let n = [n;] € R™ with (I +~T)n = 0. We shall

prove n = 0.
We define F;(v) = —(1/70)v (for all v € V.= R™), so that (2.15), (2.7) are fulfilled
with || - ]| = || - [lec- We see that (2.5) is satisfied, with At = ~ - 79, by the vectors

2; =0 (1 <i <) and y; = mer (1 < i < m), where e; is the first unit vector in
V=R".

By (2.17) or (2.18), there follows |n;| = ||yilloc < p - max;j||z;|lcc = 0, so that
n=0. d

In proving that property (2.17) implies (2.12), we shall make use of vectors £ =
(€] € RN and ) = [n;],¢ = [¢;] € R™ satisfying the following condition:

(4.7) n = R¢+ P¢, with n; # ng (for all j # k belonging to the same index set J,).

Furthermore, in proving that the (weaker) property (2.18) implies (2.12), we shall use
vectors £ = [§;] € Rl and 1 = [n;], ¢ = [¢;] € R™ satisfying the subsequent (stronger)
condition:

(4.8) n = R+ P¢, with |(5| < |n;| (for 1 < j < m), and n; # n (for all
J # k belonging to the same index set J,).

We shall see that vectors £,7,( exist satisfying conditions (4.7) and (4.8), re-
spectively, if the following (simplified) versions of assumptions (2.19) and (2.20) are
fulfilled:

(4.9) [ST](i,:) # [ST)(4,:) (if i # j belong to the same index set J,),

(4.10) [ST)(i,:) # [ST)(j,:)  (if i # j belong to the same index set Jp)-

Our proof of Proposition 4.6 needs also the following two lemmas.

LEMMA 4.4 (relevance of (4.7), (4.8) for condition (2.12)).

(i) Assume (2.17), and suppose &,n, ¢ satisfy (4.7). Then (2.12) is fulfilled.
(ii) Assume (2.18), and suppose &,n,( satisfy (4.8). Then (2.12) is fulfilled.
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LEMMA 4.5 (conditions for (4.7), (4.8)). Let I 4+ ~T be invertible. Then the
following two implications are valid:

(i) Assumption (4.9) implies the existence of &, 1, ( satisfying (4.7).

(ii) Assumption (4.10) implies the existence of £,m,( satisfying (4.8).

Since the proof of these two lemmas is rather long, it will be given separately in
section 4.2.2.

PROPOSITION 4.6 (necessity of condition (2.12) for properties (2.17), (2.18)).

(i) Assume (2.17) and irreducibility in the sense of (2.19). Then (2.12) holds.

(ii) Assume (2.18) and irreducibility in the sense of (2.20). Then (2.12) holds.

Proof. Because of Lemma 4.3, we can assume that [ 4+ 7 is invertible.

In order to prove part (i) of the proposition, we assume (2.17), (2.19). We denote
by I the set of all indices 4, with 1 <i < m and T'(:,i) = 0.

First, assume there are no index sets J, containing a pair of indices ¢ # j with
j € I° Conditions (2.19) and (4.9) are then equivalent. Hence, combining Lemma
4.5(i) and Lemma 4.4(i), we obtain (2.12).

Next, assume there do exist sets J, containing indices i # j, where j € I°. We
note that the functions Fj, with j € I°, do not enter actually in the basic relations
(2.5). Accordingly, it is immaterial for these relations whether or not a given function
Fj, with j € I° is equal to any F; with i # j. Therefore, we can refine the given
partition J; U---UJ, = {1,...,m} into one with regard to which properties (2.17)
and (4.9) hold: the refined partition is obtained, from the original one, by creating
new separate index sets for all indices j € I° belonging to an (old) index set J, with
at least two different indices.

From (the original) property (2.17), one sees that (2.17) is still present with regard
to the new, refined partition. Moreover, the original property (2.19) implies that (4.9)
is valid with regard to the new index sets. Therefore, we arrive at (2.12), again by
combining Lemma 4.5(i) and 4.4(i) (in the situation of the new partition).

To prove part (ii) of the proposition, assume (2.18), (2.20), and define I° as above.

First assume there are no sets J, containing indices i # j, where j € I°. Condi-
tions (2.20) and (4.10) are then equivalent. Hence, Lemmas 4.5(ii) and 4.4(ii) yield
(2.12).

Next assume there do exist sets J, with indices ¢ # j, where j € I°. Using the
above refined partition, similarly as in the proof of part (i) of Proposition 4.6, we
arrive again at (2.12) by combining Lemma 4.5(ii) and 4.4(ii). O

4.2.2. Proof of the Lemmas 4.4 and 4.5. The sole purpose of the present
section is to prove Lemmas 4.4 and 4.5. Throughout the section we assume, with no
loss of generality, that I 4+ T is invertible. We shall use the notation

sgn(a) =1 (for a >0), sgn(a) =—-1 (for a <0).

Proof of Lemma 4.4. The proof of this lemma is divided into several parts.

Part la. Assume (2.17), and let &,n,( satisfy (4.7). We shall prove (2.12b) via
Lemma 3.1 by assuming that A and ¢ satisfy (3.1) and deducing a contradiction from
that assumption.

We shall prove ¢ = 0 by using special vectors x = [z;] € Vi and y = [y;],2 =
[z;] € V™, where z;,y;,2; € V =R"™ have components x;;, yi;, Zi;, respectively. We
define, for 1 <i1<m,1 <j<m,1 <k </,

l m
i =0,  zij = sgn(pij)p;, Yij = Z TikTik + ijkzik-
k=1 k=1
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We have y = Rz + Pz, and because y;; = > -, [pjr|er = Apj, there follows

(4.11) 1Zjlloe = 261 = 05 S wjj = [Yjllo (1 <i<m, 1 <5 <m).

First, suppose y; # yi for all j # k belonging to the same index set J,. Then
x,y, z satisfy (4.2), with || - || = || - ||oo, so that, by Lemma 4.1, the vectors z, y satisfy
(4.4) with V.= R™ || - || = || - |- By property (2.17) and (4.11), there follows

lolloo < max;j||y;|loc < p-maxy||ak||ec = 0. Hence ¢ = 0, which contradicts (3.1) and
thus proves (2.12b).

Next, suppose yq = ys for two indices ¢ < s belonging to the same set J,. In this
situation, we modify (only) the gth component of all x;,y;, z; into Z¢; = &, 9q; =
M4, 2q; = (4, and we denote the resulting vectors by Z;, ;, Z;, respectively. The vectors
z = [%;],9 = [9;], Z = [Z,] satisfy the following variant of condition (4.2):

(4.12) y=Rz+ Pz, g; # 3, (for all j # k in the same index set).

In order that Z, g, Z actually fulfill (4.2), we define the special seminorm
ol = masc{ gl i # g} (for all Y = [13] € V = R™).

Because y;, z; satisfy (4.11), we have

(4.13) 1251l = llzjllce < llyslloo = llgsll  (for 1 <5 <m)

(where [|y;][oc = [|7;]|, with j = g, follows from ||Fg| = [|Gs]| = |yslloc = [l¥allec)-

Clearly, with the above special seminorm in V, the vectors z, g, Z fulfill (4.2), so
that Z, ¢ satisfy (4.4). Using property (2.17) and the last equality in (4.13), we find
max;||y;|lcc = max;||g;|| < p-maxg|Zx|| = 0. In view of (4.11), it follows that ¢ = 0,
which proves (2.12b).

Part 1b. Assuming (2.17), (4.7), we shall prove (2.12c). Note that we have
(I = |P))7YR|oo = |¢llcos With ¢ = [p;] € R™, where the values ¢; > 0 satisfy the
linear equations

l m
¥i = Z|7"jk| +Z Ipikler (L<j<m).
k=1 k=1

Condition (2.12c) is thus equivalent to

(4.14) lplloo < .
We shall prove this inequality, using again some special vectors z = [z;] €

Viandy = [y;],2 = [2;] € V™, where zj,yj,2; € V = R™ have components

Zij,Yij, Zij- In view of the linear equations satisfied by ¢1,..., ¢, we define now

l

m
Tk = sgn(ri),  2ij = sgn(pij)@j,  Yij = erkxik + ijkzik-
k=1 k=1

Clearly y = Rx+Pz, and because y;; = 22:1 I7ik|+> rey [Pjk|or = ¢;, the relations
(4.11) are again fulfilled.

First, suppose y; # yx for all j # k belonging to the same index set J,. Then
x,y, z satisfy (4.2) with || - || = || - ||oo, S0 that, by Lemma 4.1, the vectors z,y satisfy
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(44) with V.= R™ || - || = || - llo- By property (2.17) and (4.11), there follows
9lloe < mas; y5lloo < f - maxg |z oo = i, which implies (4.14).

Next, suppose y4 = ¥s, where ¢ < s belong to the same set J,. We modify the
gth component of z;,y;,2; as above in Part la of the proof. The resulting vectors
z = [%;],9 = [y;], 2 = [Z;] satisfy again (4.12), and—in view of (4.11)—they satisfy
also (4.13).

Consequently, Z,y,Z fulfill condition (4.2), so that %,y satisfy (4.4) with the
special seminorm defined above. Using property (2.17) and the last equality in (4.13),
we find max;||y;j||cc = max;||g;|| < p-maxy||Zg|| = i, which proves again (4.14).

Part 2a. Assume (2.18) and (4.8). We shall again prove (2.12b) via Lemma 3.1.

Denote by A and ¢ = [¢i], 2 = [z;] = [[zi;]],y = [y;] = [lyyll, 2 = [2;] = [[245]] the
same scalar and vectors as in Part 1a of the proof, so that ( 4.11) is again in force.

First, suppose y; # yi for all j # k belonging to the same index set J,. Similarly
as in Part la, we arrive at ¢ = 0, which proves (2.12b).

Next, suppose y, = ¥, where ¢ < s belong to the same set J,. Define Z;, 95, Z;
as in Part la, but now with £, 7, ¢ satisfying (4.8). We have again (4.12), (4.13), and
therefore

(4.15) 1Zjll00 = max{]|Z51], ¢;1} < max{{|g;]], n;]} = [19]loo-

Hence, Z;, 7;, Z; satisfy (4.2) with ||-|| = ||-||cc. Via Lemma 4.1 and property (2.18), we
obtain ||7;]|cc < ft-[|€]|, and in view of (4.11), (4.13), there follows [|¢|/cc < 1+ ||€]]so-

By suitable scaling of £, 7, ¢, with property (4.8), we can achieve that ||£]|oo is
arbitrarily close to zero. Hence, ¢ = 0, which proves (2.12b).

Part 2b. Assuming (2.18), (4.8), we shall prove (2.12c).

The beginning of the proof runs as in Part 1b above, using (4.8) instead of (4.7).
We arrive again at (2.12¢), via (4.14), if y; # yi for all j # k belonging to the same
set J,.

If y; = ys, for some ¢ < s belonging to the same J,, we proceed as in Part 2a
above and introduce Z;, §;, Z; satisfying (4.2) with || - || = || - ||oc. From Lemma 4.1
and property (2.18), it follows that ||7;]|c < p-maxi{1,|{]|}, and in view of (4.11),
(4.13), we obtain ||¢]lec < - maxg{1,||€]lco}-

By arranging that ||€||cc < 1, we obtain (4.14) and therefore also (2.12c¢). a

Proof of Lemma 4.5. Part 1. For given & = [¢;] € R! and A = [\;] € R™, one can
define n = [n;], { = [;] € R™ by

(4.16) mi= Y sikbk+ Y tikdk, G=mi+N/y (1<i<m).
o o

The definition is easily seen to imply
(4.17) n = R¢+ PC.

This simple implication will be used several times below.
Assuming (4.9), one can see that &, A; exist such that n;, defined by (4.16), satisfy

(4.18) n; #n; (for any ¢ # j in the same index set J,).

Because (4.16) implies (4.17), it follows that &, 7, ¢ exist satisfying (4.7).
Part 2. Assuming (4.10), we shall determine scalars e, py, &, with

(4.19) 0 <eur <2y
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such that the system of equations

(4.20) mi= Y sikkk —€ > tiprne (1<i<m)
k k

has a solution n = [r;] satisfying (4.18). Using the implication (4.16) = (4.17) (with
Ai = —eu;n;), one sees that such scalars €, g, & lead to (4.8) (with ¢; = (1 — %)nz)

To find e, pg, & with the above properties, consider first any fixed pg, &, and
note that the corresponding system (4.20) has a solution n; = 7;(¢), for € > 0 small
enough, with

(4.21)
ni(e) =0 —eri + O(e?) (fore | 0), where o;= Z Siklr, Ti = Ztikakuk.
k k

Aiming at (4.18) (with 7; = n;(¢)), we are lead by (4.21) to fix & such that
oi #o; (for S(4,:) #5(4,:)), o0:#0 (for S(i,:) #0).

Below we shall specify ug, in terms of values g which are determined such that
sgn(or) =sgn(og) (for 1 <k <m) and Zfikgk # ijka (for T'(i,:) # T'(j,2)).
We define puy = ox/ox (if o #0) and px =0 (I:f or = 0). ft follows that
e >0 (for1<k<m) and m#7 (for T(i,:) # T(j,)).
Because of (4.10), the values o;, 7; corresponding to &, ux thus specified, satisfy
(0i,75) # (05,7;) (for any i # j in the same index set J,).

Combining these inequalities with (4.21), it follows that (4.18) (with n; = 7;(¢)) and
(4.19) hold for sufficiently small e > 0. Hence ¢, i, & exist with the properties stated
above. O

REFERENCES

[1] J.C. BUTCHER, On the convergence of numerical solutions to ordinary differential equations,
Math. Comp., 20 (1966), pp. 1-10.

[2] J.C. BUTCHER The Numerical Analysis of Ordinary Differential Equations, John Wiley, Chich-
ester, UK, 1987.

[3] J.C. BUTCHER, Numerical Methods for Ordinary Differential Equations, John Wiley, Chich-
ester, UK, 2003.

[4] L. FERRACINA AND M.N. SPUJKER, Stepsize restrictions for the total-variation-diminishing
property in general Runge—Kutta methods, SIAM J. Numer. Anal., 42 (2004), pp. 1073-
1093.

[5] L. FERRACINA AND M.N. SPUUKER, An extension and analysis of the Shu-Osher representation
of Runge-Kutta methods, Math. Comp., 74 (2005), pp. 201-219.

[6] S. GorTLIEB AND C.-W. SHU, Total-variation-diminishing Runge-Kutta schemes, Math.
Comp., 67 (1998), pp. 73-85.

[7] S. GorTLIEB, C.-W. SHU, AND E. TADMOR, Strong stability-preserving high-order time dis-
cretization methods, STAM Rev., 43 (2001), pp. 89-112.

[8] E. HAIRER AND G. WANNER, Solving Ordinary Differential Equations. I1. Stiff and Differential-
Algebraic Problems, Springer-Verlag, Berlin, 1996.

[9] E. HAIRER, S.P. NORSETT, AND G. WANNER, Solving Ordinary Differential Equations. I. Non-
stiff Problems, Springer-Verlag, Berlin, 1987.

[10] A. HARTEN, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49

(1983), pp. 357-393.



[11]
[12]

[13]

STEPSIZE CONDITIONS FOR BOUNDEDNESS 3819

I. HIGUERAS, On strong stability preserving time discretization methods, J. Sci. Comput., 21
(2004), pp. 193-223.

I. HIGUERAS, Representations of Runge—Kutta methods and strong stability preserving methods,
SIAM J. Numer. Anal., 43 (2005), pp. 924-948.

R.A. HOrN AND C.R. JOHNSON, Matriz Analysis, Cambridge University Press, Cambridge,
1998.

W. HUNDSDORFER AND M.N. SPIJKER, Boundedness and Strong Stability of Runge—Kutta Meth-
ods, manuscript, 2009.

W. HUNDSDORFER, A. MOZARTOVA, AND M.N. SPIJKER, Stepsize Restrictions for Monotonicity
and Boundedness of Multistep Methods, manuscript, 2009.

W. HUNDSDORFER AND S.J. RUUTH, Monotonicity for time discretizations, in Proceedings of
the Dundee Conference 2003, D. F. Griffiths and G. A. Watson, eds., University of Dundee,
Dundee, Scotland, 2003, pp. 85-94.

W. HUNDSDORFER AND S.J. RUUTH, On monotonicity and boundedness properties of linear
multistep methods, Math. Comp., 75 (2006), pp. 655-672.

W. HUNDSDORFER AND J.G. VERWER, Numerical Solution of Time-Dependent Advection-
Diffusion-Reaction Equations, Springer Ser. Comput. Math. 33, Springer-Verlag, Berlin,
2003.

R.J. LEVEQUE, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press,
Cambridge, 2002.

S. J. RUUTH, Global optimization of explicit strong-stability-preserving Runge-Kutta methods,
Math. Comp., 75 (2006), pp. 183-207.

S.J. RUuTH AND W. HUNDSDORFER, High-order linear multistep methods with general mono-
tonicity and boundedness properties, J. Comput. Phys., 209 (2005), pp. 226-248.

C.-W. SHU, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9
(1988), pp. 1073-1084.

C.-W. SHU AND S. OSHER, Efficient implementation of essentially non-oscillatory shock-
capturing schemes, J. Comput. Phys., 77 (1988), pp. 439-471.

M.N. SPUKER, Contractivity in the numerical solution of initial value problems, Numer. Math.,
42 (1983), pp. 271-290.

M.N. SPIJKER, Stepsize conditions for general monotonicity in numerical initial value problems,
SIAM J. Numer. Anal., 45 (2007), pp. 1226-1245.

R.J. SPITERI AND S.J. RUUTH, A new class of optimal high-order strong-stability-preserving
time discretization methods, SIAM J. Numer. Anal., 40 (2002), pp. 469-491.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


